
Prof. Peter Sommerlad / Thomas Corbat
Rapperswil, 11.12.2018
HS2018

Department I - C Plus Plus

Modern and Lucid C++
for Professional Programmers

Week 13 – Dynamic Polymorphism



Recap Week 12



 Test for deducing template argument from iterator works

User Provided Deduction Guide for Sack<T> 3

void testDeductionForIterators() {
std::vector values{3, 1, 4, 1, 5, 9, 2, 6};
Sack aSack(begin(values), end(values));
ASSERT_EQUAL(values.size(), aSack.size());

}

template <typename Iter>
Sack(Iter begin, Iter end) -> Sack<typename std::iterator_traits<Iter>::value_type>;

Template declaration for 
Iter

Constructor signature Deduced template instance



 std::unique_ptr<T> obtained with std::make_unique<T>()

 std::shared_ptr<T> obtained with std::make_shared<T>()

 std::make_unique<T>() and std::make_shared<T>() are factory functions

 With these smart pointers you don't have to call delete ptr; yourself

 Still: Always prefer storing a value locally as value-type variable (stack-based or member)

Modern C++ Heap Memory Management 4

std::unique_ptr<X> factory(int i) {
return std::make_unique<X>(i);

}

#include <memory>



 The std::shared_ptr cycles need to be broken

Breaking Cycles Using std::weak_ptr 5

refs: 1

Person

refs: 2

Person

struct Person {
std::shared_ptr<Person> child;
std::weak_ptr<Person> parent;

};

int main() {
auto anakin = std::make_shared<Person>();
auto luke = std::make_shared<Person>();
anakin->child = luke;
luke->parent = anakin;
//...

}

main

anakin

luke

anakin.reset();

refs: 0

Person

refs: 1

Person

main

anakin

luke



 A std::weak_ptr does not know whether the pointee is still alive

 std::weak_ptr::lock() returns a std::shared_ptr that either points to the alive pointee or is empty

Access Through a std::weak_ptr 6

struct Person {
std::shared_ptr<Person> child;
std::weak_ptr<Person> parent;

void Person::acquireMoney() const {
auto locked = parent.lock();
if (locked) {
begForMoney(*locked);

} else {
goToTheBank();

}
}

};

refs: 2

Person

parent.lock()



Dynamic Polymorphism



 Mix-in of functionality from empty base class 

 Often with own class as template argument (CRTP) e.g., boost::equality_comparable<T>

 No inherited data members, only added functionality

 Adapting concrete classes

 No additional own data members

 Convenient for inheriting member functions and constructors

Reasons for Using Inheritance 8

struct Date : boost::equality_comparable<Date> {
//...

};

template<typename T, typename Compare>
struct indexableSet : std::set<T, Compare> {
//...

};



 Implementing a design pattern with dynamic dispatch 

 e.g., Strategy, Template Method, Composite, Decorator

 Provide common interface for a variety of dynamically changing or different implementations 

 Exchange functionality at run-time 

 Base class/interface class provides a common abstraction that is used by clients

Inheritance for Dynamic Binding 9

c
h
i
l
d
r
e
n
 
>

*
GuiElement

display()

Button

display()

Group

display()

UserInterface

TextBox

display()



Simplified Hierarchy of iostreams 10

Image source: http://users.monash.edu/~cema/courses/CSE2305/Topics/12.23.CaseStudy/html/ioHierarchy.gif

abstraction for 

formatted input

concrete class 

for string input

concrete class 

for file input

abstraction for 

formatted 

output

concrete class 

for string output

concrete class 

for file output

http://users.monash.edu/~cema/courses/CSE2305/Topics/12.23.CaseStudy/html/ioHierarchy.gif


 In class definition after class name and a colon put the list of base classes, if any 

 Sequence is important -> sequence of initialization if multiple base classes 

 With interface inheritance, base class must be public 

 Private inheritance is possible, but only useful for mix-in classes that provide friend function

 Private inheritance can be used for some mix-in base classes that only add friend functions, like 

boost/operators.hpp helper classes 

 Most often, private base classes (with members) are wrong design! 

Inheritance Syntax (Recap) 11

class Base {};
class DerivedPrivateBase : Base {};
struct DerivedPublicBase : Base {};

class Base {};
struct MixIn {};
struct MultipleBases : public Base, private MixIn {};



 Base constructors can be explicitly called in the member initializer list

 If a constructor of a base is omitted its default constructor is called

 You should put base class constructor class before the initialization of members

 The compiler enforces this rule, even though you can put the list of initializers in wrong order 

Initializing Multiple Base Classes 12

class DerivedWithCtor : public Base1, public Base2 {
int mvar;

public:
DerivedWithCtor(int i, int j) :

Base1{i}, Base2{}, mvar{j} {}
};



What is the Output? 13

struct Base1 {
explicit Base1(int value) {
std::cout << "Base1 with argument " << value << "\n";

}
};

struct Base2 {
Base2() { std::cout << "Base2\n"; }

};

class DerivedWithCtor : public Base1, public Base2 {
int mvar;

public:
DerivedWithCtor(int i, int j) 

: mvar{j}, Base2{}, Base1{mvar} {}
};

int main() {
DerivedWithCtor dwc{1, 2};

}



 C++' default mechanisms support value classes with copying/moving and deterministic lifetime 

 Operator and function overloading and templates allow polymorphic behavior at compile time 

 This is often more efficient and avoids indirection at run-time

 Dynamic polymorphism needs object references or (smart) pointers to work 

 Syntax overhead 

 The base interface must be a good abstraction

 Copying carries the danger of slicing (an object is only copied partially)

 Implementing design patterns for run-time flexibility: i.e., Strategy, Composite, Decorator 

 Client code uses abstract interface and gets parameterized/called with reference to concrete instance 

 But: if run-time flexibility is not required, templates can implement many patterns with compile-

time flexibility as well 

Dynamic Polymophism - Overview 14



 If a function is reimplemented in a derived class it shadows its counterpart in the base class

 However, if accessed through a declared base object, the shadowing function is ignored

 The following example prints: Hi, I'm Base

Shadowing Member Functions 15

struct Base {
void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
void sayHello() const {
std::cout << "Hi, I'm Derived\n";

}
};

void greet(Base const & base) {
base.sayHello();

}

int main() {
Derived derived{};
greet(derived);

}



 Dynamic polymorphism requires base classes with virtual member functions

 virtual member functions are bound dynamically

 The following example prints: Hi, I'm Derived

Virtual Member Functions 16

struct Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Derived\n";

}
};

void greet(Base const & base) {
base.sayHello();

}

int main() {
Derived derived{};
greet(derived);

}



 virtual is inherited and can be omitted in the derived class

 It is possible to mark an overriding function with override

 Similar to the Java annotation @Override the compiler will produce an error if the annotated function 

does not override a member function in a base class

Overriding virtual Member Functions 17

struct Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
void sayHello() const override {
std::cout << "Hi, I'm Derived\n";

}
};

void greet(Base const & base) {
base.sayHello();

}

int main() {
Derived derived{};
greet(derived);

}



 To override a virtual function in the base class the signature must be the same

 Constness of the member function belongs to the signature

Signatures when Overriding 18

struct Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
void sayHello() override {
std::cout << "Hi, I'm Derived\n";

}
};

struct OtherDerived : Base {
void sayHello(std::string name) const override {
std::cout << "Hi " << name << ", I'm OtherDerived\n";

}
};



 Value Object

 Class type determines function, regardless of 

virtual

 Reference

 Virtual member of derived class called 

through base class reference

Calling virtual Member Functions 19

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(Base base) {
//always calls Base::sayHello
base.sayHello();

}

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(Base const & base) {
//calls sayHello() of the actual type
base.sayHello();

}



 Smart Pointer

 Virtual member of derived class called 

through smart pointer to base class

 Dumb Pointer

 Virtual member of derived class called 

through base class pointer

Calling virtual Member Functions 20

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(std::unique_ptr<Base> base) {
//calls sayHello() of the actual type
base->sayHello();

}

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(Base const * base) {
//calls sayHello() of the actual type
base->sayHello();

}



struct Animal {
void makeSound() {out << "---\n";}
virtual void move() {out << "---\n";}
Animal() {out << "animal born\n";}
~Animal() {out << "animal dieded\n";}

};

struct Birb : Animal {
virtual void makeSound() {out << "chirp\n";}
void move() {out << "fly\n";}
Birb() {out << "birb hatched\n";}
~Birb() {out << "birb crashed\n";}

};

struct Hummingbirb : Birb {
void makeSound() {out << "peep\n";}
virtual void move() {out << "hum\n";}
Hummingbirb() {out << "hummingbirb hatched\n";}
~Hummingbirb() {out << "hummingbirb dieded\n";}

};

struct Animal {
void makeSound() {out << "---\n";}
virtual void move() {out << "---\n";}
Animal() {out << "animal born\n";}
~Animal() {out << "animal died\n";}

};

struct Bird : Animal {
virtual void makeSound() {out << "chirp\n";}
void move() {out << "fly\n";}
Bird() {out << "bird hatched\n";}
~Bird() {out << "bird crashed\n";}

};

struct Hummingbird : Bird {
void makeSound() {out << "peep\n";}
virtual void move() {out << "hum\n";}
Hummingbird() {out << "hummingbird hatched\n";}
~Hummingbird() {out << "hummingbird died\n";}

};

int main() {
cout << "(a)----------------------------\n";
Hummingbirb hummingbirb;
Birb birb = hummingbirb;
Animal & animal = hummingbirb;

cout << "(b)-----------------------------\n";
hummingbirb.makeSound();
birb.makeSound();
animal.makeSound();

cout << "(c)-----------------------------\n";
hummingbirb.move();
birb.move();
animal.move();

cout << "(d)-----------------------------\n";
}

 What is the output?

 What is bad with this code's design?

Mixed Example 21

int main() {
out << "(a)----------------------------\n";
Hummingbird hummingbird;
Bird bird = hummingbird;
Animal & animal = hummingbird;

out << "(b)-----------------------------\n";
hummingbird.makeSound();
bird.makeSound();
animal.makeSound();

out << "(c)-----------------------------\n";
hummingbird.move();
bird.move();
animal.move();

out << "(d)-----------------------------\n";
}



 There are no interfaces in C++

 A pure virtual member function makes a class abstract

 To mark a virtual member function as pure virtual it has zero assigned after its signature

 = 0

 No implementation needs to be provided for that function

 Abstract classes cannot be instantiated (like in Java)

Abstract Base Classes: Pure Virtual 22

struct AbstractBase {
virtual void doitnow() = 0;

};

AbstractBase create() {
return AbstractBase{};

}



 Classes with virtual members require a virtual Destructor

 Otherwise when allocated on the heap with std::make_unique<Derived> and assigned to a 

std::unique_ptr<Base> only the destructor of Base is called

Destructors (non-virtual) 23

struct Fuel {
virtual void burn() = 0;
~Fuel() { std::cout << "put into trash\n"; }

};

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

};

int main() {
std::unique_ptr<Fuel> surprise = std::make_unique<Plutonium>();

}

Output:
put into trash



 Classes with virtual members require a virtual Destructor

 Otherwise when allocated on the heap with std::make_unique<Derived> and assigned to a 

std::unique_ptr<Base> only the destructor of Base is called

Destructors (virtual) 24

struct Fuel {
virtual void burn() = 0;
virtual ~Fuel() { std::cout << "put into trash\n"; }

};

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

};

int main() {
std::unique_ptr<Fuel> surprise = std::make_unique<Plutonium>();

}

Output:
store many years
put into trash



 std::shared_ptr memorize the actual type and know which destructor to call

Destructors with std::shared_ptr 25

struct Fuel {
virtual void burn() = 0;
~Fuel() { std::cout << "put into trash\n"; }

};

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

};

int main() {
std::shared_ptr<Fuel> surprise = std::make_shared<Plutonium>();

}

Output:
store many years
put into trash



 Inheritance introduces a very strong coupling between subclasses 

and their base class 

 You can hardly change the base class 

 API of base class must fit for all subclasses

 Very hard to get right 

 Conceptual hierarchies are often used as examples but are usually 

very bad software design, e.g., animal->bird->duck 

 Only one standard library part (the oldest) uses inheritance with 

dynamic polymorphism: iostreams

Software Engineering: Why Inheritance Can Be Bad 26

Bird

Animal

Duck



 Assigning or passing by value a derived class value to a base class variable/parameter incurs 

object slicing

 Only base class member variables are transferred

Problem with Inheritance and Pass-by-Value 27

void modifyAndPrint(Base base) {
base.modify();
base.print(std::cout);

}

int main() {
Derived derived{25};
modifyAndPrint(derived);

}

struct Base {
int member{};
explicit Base(int initial) :

member{initial}{}
virtual ~Base() = default;
virtual void modify() { member++; }
void print(std::ostream & out) const;

};

struct Derived : Base {
using Base::Base;
void modify() {
member += 2;

}
};

Output:
26



 Member functions in derived classes hide base class member with the same name, even if different 

parameters are used

 Can be problematic, esp. with const/non-const

 Example: Derived::modify(int) hides Base::modify()

Problems with Member Hiding 28

int main() {
Derived derived{25};
derived.modify();
modifyAndPrint(derived);

}

struct Derived : Base {
using Base::Base;
void modify(int value) {
member += value;

}
};

struct Base {
int member{};
explicit Base(int initial);
virtual ~Base() = default;
virtual void modify();

};



 By "using" the base class' member the hidden name(s) become visible

 This enables a call to derived.modify()

Resolution for Hidden Members 29

int main() {
Derived derived{25};
derived.modify();
modifyAndPrint(derived);

}

struct Derived : Base {
using Base::Base;
using Base::modify;
void modify(int value) {
member += value;

}
};

struct Base {
int member{};
explicit Base(int initial);
virtual ~Base() = default;
virtual void modify();

};

using Base::modify;



 Assignment cannot be implemented properly for virtual inheritance structures

Assignment through References 30

struct Book {
explicit Book(std::vector<Page> pages) :
pages{pages}{}

virtual Page currentPage() const = 0;
protected:
std::vector<Page> pages;

};

struct EBook : Book {
using Book::Book;
void openPage(size_t pageNumber);
Page currentPage() const;

private:
size_t currentPageNumber{1};

};

void readBook(Book book);

int main() {
EBook designPatterns{"..."};
readBook(designPatterns);

EBook refactoring{"..."};
Book & some = designPatterns;
some = refactoring;

}



 The assignment to the reference of the base class overwrites the Base part of the derived object

Assignment through References 31

EBook designPatterns{writeEbook(395)};
EBook refactoring{writeEbook(430)};
refactoring.openPage(400);
Book & some = refactoring;
some = designPatterns;
readPage(some.currentPage());

designPatterns: EBook

currentPageNumber = 395

refactoring: EBook

currentPageNumber = 400

Book

content = "Composite"

Book

content = "430 Pages"

Book

content = "395 Pages"



 You can declare the copy-operations as deleted

Prevent Object Slicing in Base Class 32

struct Book {
//...
Book & operator=(Book const & other) = delete;
Book(Book const & other) = delete;

};

struct EBook : Book {
//...
EBook(EBook const & other) :

Book{pages},
currentPageNumber{other.currentPageNumber}{}

EBook & operator=(EBook const & other) {
pages = other.pages;
currentPageNumber = other.currentPageNumber;
return *this;

}
};

void readBook(Book book);

int main() {
EBook designPatterns{"..."};
readBook(designPatterns);

EBook refactoring{"..."};
Book & some = designPatterns;
some = refactoring;
EBook copy = designPatterns;
copy = refactoring;

}



 You should only apply inheritance and virtual member functions if you know what you do

 Do not (like the IDE) create classes with virtual members by default

 If you design base classes with polymorphic behavior, understand the common abstraction that 

they represent

 Do not provide too many members or too few

 Extract from existing class(es) the base after you see the commonality arise

Guidelines: Inheritance and Dynamic Polymorphism 33



 Follow the Liskov Substitution Principle

 Base class states must be valid for subclasses

 Do not break invariants of the base class

 Invariant signature: Member functions in

subclasses must accept the same argument 

types as the base class (C++)

 Covariant return type: Return values must be 

inside the base class member function's range

 Don't change semantics unexpectedly

Guidelines: Overriding Virtual Member Functions 34

Image Source: http://www.globalnerdy.com/wordpress/wp-content/uploads/2009/07/liskov_substitution_principle.jpg

http://www.globalnerdy.com/wordpress/wp-content/uploads/2009/07/liskov_substitution_principle.jpg


 Three use cases:

 Inherit features from empty mix-in classes

 Adapt features of a base class with a data-less subclass

 Dynamic polymorphism

 Beware of unwanted member hiding

 Avoid object slicing

 Mark Destructors virtual if you have any other virtual member function

Summary 35


