Bounds(element index
nde

Department | - C Plus Plus B)

>0f§ C@+\/e Op

Modern and Lucid C++ t_1
for Professional Programmers

Your C++ deserves it

& other)
size type element_inaes
dBuffer(size_type capa
argument{"Mus1 |
other) : capacityista

Week 13 - Dynamic Polymorphism

* 3

sther .capaclty =

Copy — Other; sSwap

dex())) T{element};
{ NnUMDE

Prof. Peter Sommerlad / Thomas Corbat throw
front() i

Rapperswil, 11.12.2018) .
i wack index())s ¥

D28l number'o‘f ﬂ?lf_—‘mf
o(number_oT_*

HSR o INSTITUTE FOR {

HOCHSCHULE FUR TECHNIK

RAPPERSWIL @ SOFTWARE
FHO Fachhochschule Ostschweiz . ()
8L index)’

{
)

Recap Week 12

Cevelop

Your C++ deserves it

B HSR
. . HOCHSCHULE FUR TECHNIK : INSTITUTE FOR
RAPPERSWIL ® SOFTWARE

FHO Fachhochschule Ostschweiz

User Provided Deduction Guide for Sack<T>

Iter

y

template <typename Iter>
Sack(Iter begin, Iter end) -> Sack<typename std::iterator_traits<Iter>::value_ type>;
AN\

/ ~
[Constructor signh Deduced template instance]

® Test for deducing template argument from iterator works

Template declaration for]

void testDeductionForIterators() {
std::vector values{3, 1, 4, 1, 5, 9, 2, 6};
Sack aSack(begin(values), end(values));
ASSERT_EQUAL(values.size(), aSack.size());

}

Modern C++ Heap Memory Management

std::unique ptr<X> factory(int i) {
return std::make_unique<X>(i);

}

® std::unique_ptr<T> obtained with std: :make_unique<T>()

® std::shared_ptr<T> obtained with std: :make_shared<T>()

® std::make_unique<T>() and std::make_shared<T>() are factory functions
® \With these smart pointers you don't have to call delete ptr; yourself

® Still: Always prefer storing a value locally as value-type variable (stack-based or member)

Breaking Cycles Using std: :weak_ptr

® The std::shared_ptr cycles need to be broken

main refs: 1
Person
| anakin ‘ 1
struct Person { "
std: :shared_ptr<Person> child; | luke }~ refs: 2
std: :weak ptr<Person> parent; Person
}s
int main() { anakin.reset();

auto anakin = std::make_shared<Person>();
auto luke = std::make_shared<Person>();
anakin->child = luke;

luke->parent = anakin; main refs:

/- erson
| anakin |

A 4

| luke I-\,l ;efszl ‘
Person

Access Through a std: :weak_ptr

® A std::weak_ptr does not know whether the pointee is still alive

std: :weak ptr::lock() returns a std: :shared_ptr that either points to the alive pointee or is empty

struct Person {
std: :shared ptr<Person> child;
std: :weak ptr<Person> parent;

void Person::acquireMoney() const {
auto locked = parent.lock();
if (locked) {
begForMoney(*locked);
} else {
goToTheBank();

}
}
}s

refs: ?

Person

parent.lock()

refs: 2

Person

refs: ?7+1
Person

1

locked

locked
<empty>

Dynamic Polymorphism
@++v elop

Your C++ deserves it

B HSR
. . HOCHSCHULE FUR TECHNIK : INSTITUTE FOR
RAPPERSWIL ® SOFTWARE

FHO Fachhochschule Ostschweiz

Reasons for Using Inheritance n

® Mix-in of functionality from empty base class

Often with own class as template argument (CRTP) e.g., boost: :equality comparable<T>

No inherited data members, only added functionality

struct Date : boost::equality comparable<Date> {
//...
}s

® Adapting concrete classes
No additional own data members

Convenient for inheriting member functions and constructors

template<typename T, typename Compare>
struct indexableSet : std::set<T, Compare> {
//...

3

Inheritance for Dynamic Binding n

® Implementing a design pattern with dynamic dispatch

e.g., Strategy, Template Method, Composite, Decorator
Provide common interface for a variety of dynamically changing or different implementations

Exchange functionality at run-time

® Base class/interface class provides a common abstraction that is used by clients

GuiElement .
UserInterface
display() A
A :
| I I 5
TextBox Button Group %

display() display() display()

Simplified Hierarchy of iostreams

\.

abstraction for
formatted input

abstraction for
formatted
output

J

e

\.

concrete class
for string input

e

concrete class
for string output

istringstream $yffostringstream

)
)

N

J

e

\.

concrete class
for file input

N\

concrete class
for file output

N

J

Image source: http://users.monash.edu/~cema/courses/CSE2305/Topics/12.23.CaseStudy/html/ioHierarchy.qif

http://users.monash.edu/~cema/courses/CSE2305/Topics/12.23.CaseStudy/html/ioHierarchy.gif

Inheritance Syntax (Recap)

class Base {};
class DerivedPrivateBase : Base {};
struct DerivedPublicBase : Base {};

® In class definition after class name and a colon put the list of base classes, if any

Sequence is important -> sequence of initialization if multiple base classes

class Base {};
struct MixIn {};
struct MultipleBases : public Base, private MixIn {};

® With interface inheritance, base class must be public

Private inheritance is possible, but only useful for mix-in classes that provide friend function

® Private inheritance can be used for some mix-in base classes that only add friend functions, like
boost/operators.hpp helper classes

Most often, private base classes (with members) are wrong design!

Initializing Multiple Base Classes

® Base constructors can be explicitly called in the member initializer list

If a constructor of a base is omitted its default constructor is called

® You should put base class constructor class before the initialization of members

The compiler enforces this rule, even though you can put the list of initializers in wrong order

class DerivedWithCtor : public Basel, public Base2 {
int mvar;
public:
DerivedWithCtor(int i, int j) :
Basel{i}, Base2{}, mvar{j} {}

}s

What is the Output?

struct Basel {
explicit Basel(int value) {
std::cout << "Basel with argument

¥

<< value << "\n";

¥

struct Base2 {
Base2() { std::cout << "Base2\n"; }

¥

class DerivedWithCtor : public Basel, public Base2 {
int mvar;
public:
DerivedWithCtor(int i, int j)
: mvar{j}, Base2{}, Basel{mvar} {}
}s5

int main() {
DerivedWithCtor dwc{l, 2};

}

Dynamic Polymophism - Overview

® C++' default mechanisms support value classes with copying/moving and deterministic lifetime

® Operator and function overloading and templates allow polymorphic behavior at compile time

This is often more efficient and avoids indirection at run-time

® Dynamic polymorphism needs object references or (smart) pointers to work
Syntax overhead
The base interface must be a good abstraction

Copying carries the danger of slicing (an object is only copied partially)

® Implementing design patterns for run-time flexibility: i.e., Strategy, Composite, Decorator

Client code uses abstract interface and gets parameterized/called with reference to concrete instance

® But: if run-time flexibility is not required, templates can implement many patterns with compile-
time flexibility as well

Shadowing Member Functions

® If afunction is reimplemented in a derived class it shadows its counterpart in the base class

® However, if accessed through a declared base object, the shadowing function is ignored

® The following example prints: HL, I'm Base

struct Base {
void sayHello() const {
std::cout << "Hi, I'm Base\n";
}
¥ }

int main() {
Derived derived{};
greet(derived);

void greet(Base const & base) {
base.sayHello();

struct Derived : Base {
void sayHello() const {
std::cout << "Hi, I'm Derived\n"; }
}
¥

Virtual Member Functions

® Dynamic polymorphism requires base classes with virtual member functions

virtual member functions are bound dynamically

® The following example prints: HLi, I'm Derived

struct Base {

virtual void sayHello() const { .
std::cout << "Hi, I'm Base\n"; void greet(Base const & base) {

base.sayHello();
) }
¥

int main() {
Derived derived{};
greet(derived);

struct Derived : Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Derived\n";

} }

s

Overriding virtual Member Functions

® virtual is inherited and can be omitted in the derived class

® [t is possible to mark an overriding function with override

Similar to the Java annotation @Override the compiler will produce an error if the annotated function
does not override a member function in a base class

}s

s

struct Base {

virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}

struct Derived : Base {

void sayHello() const override {
std::cout << "Hi, I'm Derived\n";

}

void greet(Base const & base) {
base.sayHello();

}

int main() {
Derived derived{};
greet(derived);

}

Signatures when Overriding

® To override a virtual function in the base class the signature must be the same

® Constness of the member function belongs to the signature

struct Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
}s

struct Derived : Base {
void sayHello() override {)’
std::cout << "Hi, I'm Derived\n";
}
¥

struct OtherDerived : Base {)'
void sayHello(std::string name) const override {
std::cout << "Hi " << name << ", I'm OtherDerived\n";

}
}s

Calling virtual Member Functions

® Value Object ® Reference
Class type determines function, regardless of Virtual member of derived class called
virtual through base class reference
struct Base { struct Base {
virtual void sayHello() const; virtual void sayHello() const;
}s }s
struct Derived : Base { struct Derived : Base {
void sayHello() const; void sayHello() const;
}s }s
void greet(Base base) { void greet(Base const & base) {
//always calls Base::sayHello //calls sayHello() of the actual type
base.sayHello(); base.sayHello();
} }

Calling virtual Member Functions

® Smart Pointer

Virtual member of derived class called
through smart pointer to base class

struct Base {
virtual void sayHello() const;

s

struct Derived : Base {
void sayHello() const;

s

void greet(std::unique_ptr<Base> base) {
//calls sayHello() of the actual type
base->sayHello();

}

® Dumb Pointer

Virtual member of derived class called
through base class pointer

struct Base {
virtual void sayHello() const;

s

struct Derived : Base {
void sayHello() const;

s

void greet(Base const * base) {
//calls sayHello() of the actual type
base->sayHello();

}

Mixed Example

struct Animal {
void makeSound() {out << "---\n";}
virtual void move() {out << "---\n";}
Animal() {out << "animal born\n";}
~Animal() {out << "animal died\n";}

int main() {
out << "(@)------mmmmmm e \n";
Hummingbird hummingbird;
Bird bird = hummingbird;
Animal & animal = hummingbird;

}s out << "(b)mmmmmm e \n";
hummingbird.makeSound();
struct Bird : Animal { bird.makeSound();

virtual void makeSound() {out << "chirp\n";}
void move() {out << "fly\n";}

Bird() {out << "bird hatched\n";} hummingbird.move();
~Bird() {out << "bird crashed\n";} bird.move();

& animal.move();
OUt << "(d)-mm-mm o e \n";

animal.makeSound();
OUt << "(C)mmmmm e \n";

struct Hummingbird : Bird { }
void makeSound() {out << "peep\n";}
virtual void move() {out << "hum\n";} _
Hummingbird() {out << "hummingbird hatched\n";} ® What is the output?
~Hummingbird() {out << "hummingbird died\n";}

}s ® What is bad with this code's design?

Abstract Base Classes: Pure Virtual

® There are no interfaces in C++
® A pure virtual member function makes a class abstract

® To mark a virtual member function as pure virtual it has zero assigned after its signature
=0

No implementation needs to be provided for that function

struct AbstractBase {
virtual void doitnow() = ©;

}s

® Abstract classes cannot be instantiated (like in Java)

AbstractBase create() {
return AbstractBase{};

}

Destructors (non-virtual)

® Classes with virtual members require a virtual Destructor

Otherwise when allocated on the heap with std: :make_unique<Derived> and assigned to a
std: :unique_ptr<Base> only the destructor of Base is called

Output:

struct Fuel { put into trash

virtual void burn() = 0;
~Fuel() { std::cout << "put into trash\n"; }

}s

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

}s

int main() {
std::unique ptr<Fuel> surprise = std::make_unique<Plutonium>();

}

Destructors (virtual)

® Classes with virtual members require a virtual Destructor

Otherwise when allocated on the heap with std: :make_unique<Derived>
std: :unique_ptr<Base> only the destructor of Base is called

struct Fuel {

virtual void burn() = 0;
virtual ~Fuel() { std::cout << "put into trash\n"; }

}s

struct Plutonium : Fuel {

void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

}s

int main() {

std: :unique ptr<Fuel> surprise

}

and assigned to a

Output:
store many years
put into trash

std: :make_unique<Plutonium>();

Destructors with std: :shared ptr

® std::shared_ptr memorize the actual type and know which destructor to call

struct Fuel {
virtual void burn() = 0;
~Fuel() { std::cout << "put into trash\n"; }

}s

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

}s

int main() {
std::shared ptr<Fuel> surprise = std::make_shared<Plutonium>();

}

Output:
store many years
put into trash

Software Engineering: Why Inheritance Can Be Bad

® Inheritance introduces a very strong coupling between subclasses
and their base class

You can hardly change the base class

® API of base class must fit for all subclasses

Very hard to get right

® Conceptual hierarchies are often used as examples but are usually
very bad software design, e.g., animal->bird->duck

® Only one standard library part (the oldest) uses inheritance with
dynamic polymorphism: iostreams

Animal

T

Bird

T

Duck

Problem with Inheritance and Pass-by-Value

® Assigning or passing by value a derived class value to a base class variable/parameter incurs
object slicing

Only base class member variables are transferred

struct Base { void modifyAndPrint(Base base) {
int member{}; base.modify();
explicit Base(int initial) : base.print(std::cout);
member{initial}{} }
virtual ~Base() = default;
virtual void modify() { member++; } int main() {
void print(std::ostream & out) const; Derived derived{25};
}; modifyAndPrint(derived);
}

struct Derived : Base {
using Base::Base;
void modify() {

member += 2; Qutput:
} 26

}s

Problems with Member Hiding

® Member functions in derived classes hide base class member with the same name, even if different
parameters are used

Can be problematic, esp. with const/non-const

® Example: Derived: :modify(int) hides Base: :modify()

struct Base { struct Derived : Base { . .
. . int main() {
int member{}; using Base::Base; . .

.. . e . . . Derived derived{25};
explicit Base(int initial); 4~ void modify(int value) { derived.modify();
virtual ~Base() = default; ‘“des member += value; :) SRS

. . . modifyAndPrint(derived);
virtual void modify(); } }

}s }s

Resolution for Hidden Members

® By "using" the base class' member the hidden name(s) become visible

using Base::modify;

® This enables a call to derived.modify()

st

s

ruct Base {

int member{};

explicit Base(int initial);
virtual ~Base() = default;
virtual void modify();

struct Derived : Base {
using Base::Base;
using Base::modify;
void modify(int value) {
member += value;

}
s

int main() {
Derived derived{25};
derived.modify();
modifyAndPrint(derived);

}

Assignment through References

® Assignment cannot be implemented properly for virtual inheritance structures

void readBook(Book book);
struct Book {

explicit Book(std::vector<Page> pages) :

pages{pages}{} tnt main() {

) EBook designPatterns{"..."};
virtual Page currentPage() const = 0;
protected:
std::vector<Page> pages; EBook refactoring{"..."};

¥ Book & some = designPatterns;
struct EBook : Book {

using Book: :Book;

void openPage(size t pageNumber);

Page currentPage() const;
private:

size t currentPageNumber{l};

s

Assignment through References

® The assignment to the reference of the base class overwrites the Base part of the derived object

EBook designPatterns{writeEbook(395)};
EBook refactoring{writeEbook(430)};
refactoring.openPage(400);

Book & some = refactoring;

readPage(some.currentPage());

designPatterns: EBook refactoring: EBook
currentPageNumber = 395 currentPageNumber = 400
Book Book

content = "395 Pages" content = "430 Pages”

Prevent Object Slicing in Base Class

® You can declare the copy-operations as deleted

struct Book { void readBook(Book book);

/[/]...

Book & operator=(Book const & other) = delete; int main() {

Book(Book const & other) = delete; EBook designPatterns{"..."};
}; readBook (designPatterns);
struct EBook : Book { EBook refactoring{"..."};

//... Book & some = designPatterns;

EBook (EBook const & other) : some = refactoring;
Book{pages}, EBook copy = designPatterns;
currentPageNumber{other.currentPageNumber}{} copy = refactoring;

EBook & operator=(EBook const & other) { }

pages = other.pages;
currentPageNumber = other.currentPageNumber;
return *this;

}

}s5

Guidelines: Inheritance and Dynamic Polymorphism

® You should only apply inheritance and virtual member functions if you know what you do

® Do not (like the IDE) create classes with virtual members by default

® |f you design base classes with polymorphic behavior, understand the common abstraction that
they represent

Do not provide too many members or too few

Extract from existing class(es) the base after you see the commonality arise

Guidelines: Overriding Virtual Member Functions

® Follow the Liskov Substitution Principle
Base class states must be valid for subclasses
Do not break invariants of the base class

Invariant signature: Member functions in
subclasses must accept the same argument
types as the base class (C++)

Covariant return type: Return values must be
inside the base class member function's range Liskov Substitution Prmaple

If it looks like a duck and quacks like a duck but needs batteries,
you probably have the wrong abstraction.

Don't change semantics unexpectedly

Image Source: http://www.globalnerdy.com/wordpress/wp-content/uploads/2009/07/liskov_substitution_principle.jpg

http://www.globalnerdy.com/wordpress/wp-content/uploads/2009/07/liskov_substitution_principle.jpg

Summary

® Three use cases:

Inherit features from empty mix-in classes
Adapt features of a base class with a data-less subclass
Dynamic polymorphism

® Beware of unwanted member hiding

® Avoid object slicing

® Mark Destructors virtual if you have any other virtual member function

