
Prof. Peter Sommerlad / Thomas Corbat
Rapperswil, 11.12.2018
HS2018

Department I - C Plus Plus

Modern and Lucid C++
for Professional Programmers

Week 13 – Dynamic Polymorphism



Recap Week 12



 Test for deducing template argument from iterator works

User Provided Deduction Guide for Sack<T> 3

void testDeductionForIterators() {
std::vector values{3, 1, 4, 1, 5, 9, 2, 6};
Sack aSack(begin(values), end(values));
ASSERT_EQUAL(values.size(), aSack.size());

}

template <typename Iter>
Sack(Iter begin, Iter end) -> Sack<typename std::iterator_traits<Iter>::value_type>;

Template declaration for 
Iter

Constructor signature Deduced template instance



 std::unique_ptr<T> obtained with std::make_unique<T>()

 std::shared_ptr<T> obtained with std::make_shared<T>()

 std::make_unique<T>() and std::make_shared<T>() are factory functions

 With these smart pointers you don't have to call delete ptr; yourself

 Still: Always prefer storing a value locally as value-type variable (stack-based or member)

Modern C++ Heap Memory Management 4

std::unique_ptr<X> factory(int i) {
return std::make_unique<X>(i);

}

#include <memory>



 The std::shared_ptr cycles need to be broken

Breaking Cycles Using std::weak_ptr 5

refs: 1

Person

refs: 2

Person

struct Person {
std::shared_ptr<Person> child;
std::weak_ptr<Person> parent;

};

int main() {
auto anakin = std::make_shared<Person>();
auto luke = std::make_shared<Person>();
anakin->child = luke;
luke->parent = anakin;
//...

}

main

anakin

luke

anakin.reset();

refs: 0

Person

refs: 1

Person

main

anakin

luke



 A std::weak_ptr does not know whether the pointee is still alive

 std::weak_ptr::lock() returns a std::shared_ptr that either points to the alive pointee or is empty

Access Through a std::weak_ptr 6

struct Person {
std::shared_ptr<Person> child;
std::weak_ptr<Person> parent;

void Person::acquireMoney() const {
auto locked = parent.lock();
if (locked) {
begForMoney(*locked);

} else {
goToTheBank();

}
}

};

refs: 2

Person

parent.lock()



Dynamic Polymorphism



 Mix-in of functionality from empty base class 

 Often with own class as template argument (CRTP) e.g., boost::equality_comparable<T>

 No inherited data members, only added functionality

 Adapting concrete classes

 No additional own data members

 Convenient for inheriting member functions and constructors

Reasons for Using Inheritance 8

struct Date : boost::equality_comparable<Date> {
//...

};

template<typename T, typename Compare>
struct indexableSet : std::set<T, Compare> {
//...

};



 Implementing a design pattern with dynamic dispatch 

 e.g., Strategy, Template Method, Composite, Decorator

 Provide common interface for a variety of dynamically changing or different implementations 

 Exchange functionality at run-time 

 Base class/interface class provides a common abstraction that is used by clients

Inheritance for Dynamic Binding 9

c
h
i
l
d
r
e
n
 
>

*
GuiElement

display()

Button

display()

Group

display()

UserInterface

TextBox

display()



Simplified Hierarchy of iostreams 10

Image source: http://users.monash.edu/~cema/courses/CSE2305/Topics/12.23.CaseStudy/html/ioHierarchy.gif

abstraction for 

formatted input

concrete class 

for string input

concrete class 

for file input

abstraction for 

formatted 

output

concrete class 

for string output

concrete class 

for file output

http://users.monash.edu/~cema/courses/CSE2305/Topics/12.23.CaseStudy/html/ioHierarchy.gif


 In class definition after class name and a colon put the list of base classes, if any 

 Sequence is important -> sequence of initialization if multiple base classes 

 With interface inheritance, base class must be public 

 Private inheritance is possible, but only useful for mix-in classes that provide friend function

 Private inheritance can be used for some mix-in base classes that only add friend functions, like 

boost/operators.hpp helper classes 

 Most often, private base classes (with members) are wrong design! 

Inheritance Syntax (Recap) 11

class Base {};
class DerivedPrivateBase : Base {};
struct DerivedPublicBase : Base {};

class Base {};
struct MixIn {};
struct MultipleBases : public Base, private MixIn {};



 Base constructors can be explicitly called in the member initializer list

 If a constructor of a base is omitted its default constructor is called

 You should put base class constructor class before the initialization of members

 The compiler enforces this rule, even though you can put the list of initializers in wrong order 

Initializing Multiple Base Classes 12

class DerivedWithCtor : public Base1, public Base2 {
int mvar;

public:
DerivedWithCtor(int i, int j) :

Base1{i}, Base2{}, mvar{j} {}
};



What is the Output? 13

struct Base1 {
explicit Base1(int value) {
std::cout << "Base1 with argument " << value << "\n";

}
};

struct Base2 {
Base2() { std::cout << "Base2\n"; }

};

class DerivedWithCtor : public Base1, public Base2 {
int mvar;

public:
DerivedWithCtor(int i, int j) 

: mvar{j}, Base2{}, Base1{mvar} {}
};

int main() {
DerivedWithCtor dwc{1, 2};

}



 C++' default mechanisms support value classes with copying/moving and deterministic lifetime 

 Operator and function overloading and templates allow polymorphic behavior at compile time 

 This is often more efficient and avoids indirection at run-time

 Dynamic polymorphism needs object references or (smart) pointers to work 

 Syntax overhead 

 The base interface must be a good abstraction

 Copying carries the danger of slicing (an object is only copied partially)

 Implementing design patterns for run-time flexibility: i.e., Strategy, Composite, Decorator 

 Client code uses abstract interface and gets parameterized/called with reference to concrete instance 

 But: if run-time flexibility is not required, templates can implement many patterns with compile-

time flexibility as well 

Dynamic Polymophism - Overview 14



 If a function is reimplemented in a derived class it shadows its counterpart in the base class

 However, if accessed through a declared base object, the shadowing function is ignored

 The following example prints: Hi, I'm Base

Shadowing Member Functions 15

struct Base {
void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
void sayHello() const {
std::cout << "Hi, I'm Derived\n";

}
};

void greet(Base const & base) {
base.sayHello();

}

int main() {
Derived derived{};
greet(derived);

}



 Dynamic polymorphism requires base classes with virtual member functions

 virtual member functions are bound dynamically

 The following example prints: Hi, I'm Derived

Virtual Member Functions 16

struct Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Derived\n";

}
};

void greet(Base const & base) {
base.sayHello();

}

int main() {
Derived derived{};
greet(derived);

}



 virtual is inherited and can be omitted in the derived class

 It is possible to mark an overriding function with override

 Similar to the Java annotation @Override the compiler will produce an error if the annotated function 

does not override a member function in a base class

Overriding virtual Member Functions 17

struct Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
void sayHello() const override {
std::cout << "Hi, I'm Derived\n";

}
};

void greet(Base const & base) {
base.sayHello();

}

int main() {
Derived derived{};
greet(derived);

}



 To override a virtual function in the base class the signature must be the same

 Constness of the member function belongs to the signature

Signatures when Overriding 18

struct Base {
virtual void sayHello() const {
std::cout << "Hi, I'm Base\n";

}
};

struct Derived : Base {
void sayHello() override {
std::cout << "Hi, I'm Derived\n";

}
};

struct OtherDerived : Base {
void sayHello(std::string name) const override {
std::cout << "Hi " << name << ", I'm OtherDerived\n";

}
};



 Value Object

 Class type determines function, regardless of 

virtual

 Reference

 Virtual member of derived class called 

through base class reference

Calling virtual Member Functions 19

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(Base base) {
//always calls Base::sayHello
base.sayHello();

}

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(Base const & base) {
//calls sayHello() of the actual type
base.sayHello();

}



 Smart Pointer

 Virtual member of derived class called 

through smart pointer to base class

 Dumb Pointer

 Virtual member of derived class called 

through base class pointer

Calling virtual Member Functions 20

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(std::unique_ptr<Base> base) {
//calls sayHello() of the actual type
base->sayHello();

}

struct Base {
virtual void sayHello() const;

};

struct Derived : Base {
void sayHello() const;

};

void greet(Base const * base) {
//calls sayHello() of the actual type
base->sayHello();

}



struct Animal {
void makeSound() {out << "---\n";}
virtual void move() {out << "---\n";}
Animal() {out << "animal born\n";}
~Animal() {out << "animal dieded\n";}

};

struct Birb : Animal {
virtual void makeSound() {out << "chirp\n";}
void move() {out << "fly\n";}
Birb() {out << "birb hatched\n";}
~Birb() {out << "birb crashed\n";}

};

struct Hummingbirb : Birb {
void makeSound() {out << "peep\n";}
virtual void move() {out << "hum\n";}
Hummingbirb() {out << "hummingbirb hatched\n";}
~Hummingbirb() {out << "hummingbirb dieded\n";}

};

struct Animal {
void makeSound() {out << "---\n";}
virtual void move() {out << "---\n";}
Animal() {out << "animal born\n";}
~Animal() {out << "animal died\n";}

};

struct Bird : Animal {
virtual void makeSound() {out << "chirp\n";}
void move() {out << "fly\n";}
Bird() {out << "bird hatched\n";}
~Bird() {out << "bird crashed\n";}

};

struct Hummingbird : Bird {
void makeSound() {out << "peep\n";}
virtual void move() {out << "hum\n";}
Hummingbird() {out << "hummingbird hatched\n";}
~Hummingbird() {out << "hummingbird died\n";}

};

int main() {
cout << "(a)----------------------------\n";
Hummingbirb hummingbirb;
Birb birb = hummingbirb;
Animal & animal = hummingbirb;

cout << "(b)-----------------------------\n";
hummingbirb.makeSound();
birb.makeSound();
animal.makeSound();

cout << "(c)-----------------------------\n";
hummingbirb.move();
birb.move();
animal.move();

cout << "(d)-----------------------------\n";
}

 What is the output?

 What is bad with this code's design?

Mixed Example 21

int main() {
out << "(a)----------------------------\n";
Hummingbird hummingbird;
Bird bird = hummingbird;
Animal & animal = hummingbird;

out << "(b)-----------------------------\n";
hummingbird.makeSound();
bird.makeSound();
animal.makeSound();

out << "(c)-----------------------------\n";
hummingbird.move();
bird.move();
animal.move();

out << "(d)-----------------------------\n";
}



 There are no interfaces in C++

 A pure virtual member function makes a class abstract

 To mark a virtual member function as pure virtual it has zero assigned after its signature

 = 0

 No implementation needs to be provided for that function

 Abstract classes cannot be instantiated (like in Java)

Abstract Base Classes: Pure Virtual 22

struct AbstractBase {
virtual void doitnow() = 0;

};

AbstractBase create() {
return AbstractBase{};

}



 Classes with virtual members require a virtual Destructor

 Otherwise when allocated on the heap with std::make_unique<Derived> and assigned to a 

std::unique_ptr<Base> only the destructor of Base is called

Destructors (non-virtual) 23

struct Fuel {
virtual void burn() = 0;
~Fuel() { std::cout << "put into trash\n"; }

};

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

};

int main() {
std::unique_ptr<Fuel> surprise = std::make_unique<Plutonium>();

}

Output:
put into trash



 Classes with virtual members require a virtual Destructor

 Otherwise when allocated on the heap with std::make_unique<Derived> and assigned to a 

std::unique_ptr<Base> only the destructor of Base is called

Destructors (virtual) 24

struct Fuel {
virtual void burn() = 0;
virtual ~Fuel() { std::cout << "put into trash\n"; }

};

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

};

int main() {
std::unique_ptr<Fuel> surprise = std::make_unique<Plutonium>();

}

Output:
store many years
put into trash



 std::shared_ptr memorize the actual type and know which destructor to call

Destructors with std::shared_ptr 25

struct Fuel {
virtual void burn() = 0;
~Fuel() { std::cout << "put into trash\n"; }

};

struct Plutonium : Fuel {
void burn() { std::cout << "split core\n"; }
~Plutonium() { std::cout << "store many years\n"; }

};

int main() {
std::shared_ptr<Fuel> surprise = std::make_shared<Plutonium>();

}

Output:
store many years
put into trash



 Inheritance introduces a very strong coupling between subclasses 

and their base class 

 You can hardly change the base class 

 API of base class must fit for all subclasses

 Very hard to get right 

 Conceptual hierarchies are often used as examples but are usually 

very bad software design, e.g., animal->bird->duck 

 Only one standard library part (the oldest) uses inheritance with 

dynamic polymorphism: iostreams

Software Engineering: Why Inheritance Can Be Bad 26

Bird

Animal

Duck



 Assigning or passing by value a derived class value to a base class variable/parameter incurs 

object slicing

 Only base class member variables are transferred

Problem with Inheritance and Pass-by-Value 27

void modifyAndPrint(Base base) {
base.modify();
base.print(std::cout);

}

int main() {
Derived derived{25};
modifyAndPrint(derived);

}

struct Base {
int member{};
explicit Base(int initial) :

member{initial}{}
virtual ~Base() = default;
virtual void modify() { member++; }
void print(std::ostream & out) const;

};

struct Derived : Base {
using Base::Base;
void modify() {
member += 2;

}
};

Output:
26



 Member functions in derived classes hide base class member with the same name, even if different 

parameters are used

 Can be problematic, esp. with const/non-const

 Example: Derived::modify(int) hides Base::modify()

Problems with Member Hiding 28

int main() {
Derived derived{25};
derived.modify();
modifyAndPrint(derived);

}

struct Derived : Base {
using Base::Base;
void modify(int value) {
member += value;

}
};

struct Base {
int member{};
explicit Base(int initial);
virtual ~Base() = default;
virtual void modify();

};



 By "using" the base class' member the hidden name(s) become visible

 This enables a call to derived.modify()

Resolution for Hidden Members 29

int main() {
Derived derived{25};
derived.modify();
modifyAndPrint(derived);

}

struct Derived : Base {
using Base::Base;
using Base::modify;
void modify(int value) {
member += value;

}
};

struct Base {
int member{};
explicit Base(int initial);
virtual ~Base() = default;
virtual void modify();

};

using Base::modify;



 Assignment cannot be implemented properly for virtual inheritance structures

Assignment through References 30

struct Book {
explicit Book(std::vector<Page> pages) :
pages{pages}{}

virtual Page currentPage() const = 0;
protected:
std::vector<Page> pages;

};

struct EBook : Book {
using Book::Book;
void openPage(size_t pageNumber);
Page currentPage() const;

private:
size_t currentPageNumber{1};

};

void readBook(Book book);

int main() {
EBook designPatterns{"..."};
readBook(designPatterns);

EBook refactoring{"..."};
Book & some = designPatterns;
some = refactoring;

}



 The assignment to the reference of the base class overwrites the Base part of the derived object

Assignment through References 31

EBook designPatterns{writeEbook(395)};
EBook refactoring{writeEbook(430)};
refactoring.openPage(400);
Book & some = refactoring;
some = designPatterns;
readPage(some.currentPage());

designPatterns: EBook

currentPageNumber = 395

refactoring: EBook

currentPageNumber = 400

Book

content = "Composite"

Book

content = "430 Pages"

Book

content = "395 Pages"



 You can declare the copy-operations as deleted

Prevent Object Slicing in Base Class 32

struct Book {
//...
Book & operator=(Book const & other) = delete;
Book(Book const & other) = delete;

};

struct EBook : Book {
//...
EBook(EBook const & other) :

Book{pages},
currentPageNumber{other.currentPageNumber}{}

EBook & operator=(EBook const & other) {
pages = other.pages;
currentPageNumber = other.currentPageNumber;
return *this;

}
};

void readBook(Book book);

int main() {
EBook designPatterns{"..."};
readBook(designPatterns);

EBook refactoring{"..."};
Book & some = designPatterns;
some = refactoring;
EBook copy = designPatterns;
copy = refactoring;

}



 You should only apply inheritance and virtual member functions if you know what you do

 Do not (like the IDE) create classes with virtual members by default

 If you design base classes with polymorphic behavior, understand the common abstraction that 

they represent

 Do not provide too many members or too few

 Extract from existing class(es) the base after you see the commonality arise

Guidelines: Inheritance and Dynamic Polymorphism 33



 Follow the Liskov Substitution Principle

 Base class states must be valid for subclasses

 Do not break invariants of the base class

 Invariant signature: Member functions in

subclasses must accept the same argument 

types as the base class (C++)

 Covariant return type: Return values must be 

inside the base class member function's range

 Don't change semantics unexpectedly

Guidelines: Overriding Virtual Member Functions 34

Image Source: http://www.globalnerdy.com/wordpress/wp-content/uploads/2009/07/liskov_substitution_principle.jpg

http://www.globalnerdy.com/wordpress/wp-content/uploads/2009/07/liskov_substitution_principle.jpg


 Three use cases:

 Inherit features from empty mix-in classes

 Adapt features of a base class with a data-less subclass

 Dynamic polymorphism

 Beware of unwanted member hiding

 Avoid object slicing

 Mark Destructors virtual if you have any other virtual member function

Summary 35


